A Study of On-board Fusion and Extraction Algorithm of Pedestrian under the Environment of CVIS
-
摘要: 车载行人识别系统由于存在检测距离精确度不高及受遮挡影响较大等问题,在弯道及交叉口情况下适应性差.为提高行人防碰撞系统的预警效果,提出在车路协同环境下的行人目标信息融合算法研究.采用路侧和车载摄像头检测行人轨迹信息,通过 Kalman 滤波进行信息预处理,其次分别通过时间对准、空间对准、轨迹关联和信息融合完成对行人目标的位置估计.最后,搭建实车实验平台,对提出的信息融合算法进行验证.实验结果显示,对于 X 方向的行人轨迹误差,通过轨迹融合后,行人轨迹最大绝对误差、绝对平均误差相比于融合前均有大幅度减小,分别为50.00%,55.56%;对于Y 方向的行人轨迹误差,通过轨迹融合后,行人轨迹最大绝对误差、绝对平均误差相比于融合前均有大幅度减小,分别为40.00%,62.07%.实验结果表明,该融合算法提高了行人轨迹检测精度,增强了系统的预警精确度.
-
关键词:
- 交通安全 /
- 行人检测 /
- 车路协同(CVIS) /
- 信息融合 /
- 轨迹关联
Abstract: Due to its low accuracy of detection distance and occlusion,current on-board pedestrian recognition sys-tems are not suitable for implementation at curves and intersections.In order to enhance the warning effects of vehicle on-board system,this paper developed a fusion & extraction algorithm for pedestrian identification under the environment of cooperative vehicle infrastructure system (CVIS).Pedestrian is detected by roadside and on-board cameras,and pretrea-ted by a Kalman filter.The optimal position estimation of pedestrian is estimated through spatial and temporal alignment, fuzzy association and Kalman fusion.An actual vehicle experiment platform is set up to verify the effectiveness of the pro-posed fusion & extraction algorithm.Compared to errors from the pedestrian trajectory estimated before applying the fu-sion and extraction algorithm ,the maximum absolute error reduces by 5 0 .0 0 % and absolute average error reduces by 55.56% at the X direction .As to theY direction,the maximum absolute error reduces by 40.00%,and the absolute av-erage error reduces by 62.07%.Experimental results show that the proposed algorithm improves the detection accuracy of pedestrian trajectory and enhances the warning accuracy of the system significantly.
点击查看大图
计量
- 文章访问数: 305
- HTML全文浏览量: 41
- PDF下载量: 0
- 被引次数: 0